

Webinar: New trends in catalysis for biomass valorization – 22th July 2020

Catalytic Valorization of Lignocellulosic Biomass

Dorothée Laurenti

IRCELYON, UMR5256 Univ. Lyon, CNRS-Univ. Lyon1, 2 av. Einstein 69626 Villeurbanne, France

² LAGEP UMR 5007, Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS, 43 Bd du 11 novembre 1918, 69100, Villeurbanne, France

dorothee.laurenti@ircelyon.univ-lyon1.fr

The Earth is suffering...

Global warming

Petroleum a non renewable source of carbon

« The End » of fossil ressources

- Extraction becomes more difficult
- Process of heavier fractions
- Fluctuation of the prices
- Political use

Sustainability

- Neutral Carbon
- Renewable energy sources as an alternative for chemicals and fossil fue

Lignocellulosic biomass

Cellulose (30-45%)

Hemicellulose (20-30%)

Aromatics, phenolics

Sugars, Acids

Challenges of the biorefinery

Compared to fossil ressources, biomass feedstocks are:

- More complex, highly functionalized, unstable,
- Containing more contaminants like O, S, N, but also Cl, P, Na, Ca, K, Mg, Si, Fe, Cr...
- Requiring polar/aqueous conditions

Tulip Poplar

Corn Stover

LIGNOCELLULOSIC BIOMASS DIVERSITY

Pine

Wheat Straw

Beech

Challenges of the biorefinery

Compared to fossil ressources, biomass feedstocks are:

- More complex, highly functionalized, unstable,
- Containing more contaminants like O, S, N, but also Cl, P, Na, Ca, K, Mg, Si, Fe, Cr...
- Requiring polar/aqueous conditions

Lignocellulosic biomass diversity

Composition (C, H, L and others) variation Feedstock storage and pretreatment Increase infrastructures costs

Abundant but still limited...

Wastes must be valorized Targets have to be well identified

From the Refinery to the Biorefinery

Traditional Refinery

From the Refinery to the Biorefinery

Catalysts for biomass conversion

« Catalysts are needed to improve yields and quality of biooils and decrease char/solid formation»

- Metals (Ru, Ni, Fe...)
- Metal Sulfides (Mo, W...)
- Metal Carbides

புதி Lyon 1

- Metal Nitrides
- Metal Phosphides
- Metal Oxides
- Zeolites/ordered porous solids

Bi-functionality

Acidic catalysts **Basic catalysts**

Deactivation

Poisoning Degradation Leaching

Recyclability

Cleaning Reduction Oxidation

Liquefaction of lignocellulosic biomass

HDO of pyrolytic bio-oils

HDO of Guaiacol in liquid phase

HDO of Guaiacol in dodecane Hydroconversion of lignin in tetralin

$CoMoS/ZrO_2 \approx CoMoS/Al_2O_3 \approx CoMoS/TiO_2$

Analogy between gas-phase and liquid phase can be very limited

Interaction with Solvent Competition, solvating species, mass-transport limitations, structural changes in catalysts....

Interaction with other components (lignin)

Mixture of molecules for representative reaction

M. Ozagac PhD

Main Issue: thermal instability during the catalytic hydroconversion process

ഗ്ള്ര) Lyon 1

Catalyst used: reduced NiMo/Al2O3

Choosing representative model mixture

Choosing representative model mixture

Reaction scheme for glucose hydroconversion

Reduced NiMo/Al2O3 under H2 pressure, 250°C

Model Mixtures HDT

C16 as solvent

The presence of guaiacol minimized residues production and increased liquid

M. Ozagac et al., Biomass & Bioenergy 95 (2016) 182 and 194

HDT of bio-oil without and with guaiacol (50/50wt%) at 250°C on NiMored/Al2O3

Size-Exclusion Chromatography SEC-RI detector

Without guaiacol : macromolecules formation

UB

Lvon 1

Conclusion on guaiacol effect in HDT of bio-oils

Hydroconversion of model compounds

D-Glucose + Furfural + Acetic acid with water

Production of Macromolecules/solids

Blend with Guaiacol

- Solid residues production limited
- Guaiacol is stabilizig reactive compounds precursors of solids

Hydroconversion of Pyrolysis Bio-oil

- Same trends !
- Representative

M. Ozagac et al., Biomass & Bioenergy 95 (**2016**) 182 M. Ozagac et al., Biomass & Bioenergy 95 (**2016**) 194 M. Ozagac et al., Biomass & Bioenergy 108 (**2018**) 501

Catalytic conversion of Pyrolytic Vapors

Catalytic conversion of Pyrolytic Vapors

C. Torri et al., J. Anal. Appl. Pyrolysis, 88, 2010, 7.
P. T. Williams et al., Energy, 25, 2000, 493.

ANR project CATAPULT: CATAlytic Pyrolysis to Upgraded bio-oiLs for a joinT production of chemicals and fuels

Semi-continuous pyrolysis set-up

Picture of the pyrolysis reactor

Trap (4°C)

- The reactor, heated at 500°C, quartz tube containing two porous frits
- The first frit stops char and protects the catalyst supported on the second one
- A nitrogen flow of 6 L.h⁻¹ inerts the biomass injector and 24 L.h⁻¹ added in the reactor (Possibility to add H₂ flow during pyrolysis)
- A condensing system collects the bio oil at 4°C
- > An electrostatic trap captures very fine oil droplets
- A last trap with silica gel protects the micro GC used for on-line gas analysis

Zeolites catalysts

Catalysts	BET (m²/g)	ICP-OES analysis (wt%)
HBeta	713	
HMFI-90 (ZSM-5)	422	
5%Ni/HMFI-90	392	(Ni) 4.7
5% Zn/HMFI-90	375	(ZnO) 4.9
5% Pt/HFMFI-90	406	(Pt) 4.8
5% Ce/HMFI-90	400	(CeO2) 4.7

<u>H-Beta BEA</u> <u>Structure</u>

MFI (ZSM-5) Structure

Preparation of catalyst 5%M/HMFI-90 by incipient wetness impregnation

- Precursor used : M(NO₃)₂, 6H₂O
- Dry in air (25°C) then in oven (100°C)
- Calcination at 550°C during 5h
- In situ reduction at 500°C under 10% H₂/N₂ (500 mL/min) during 1h
- catalyst-to-biomass ratio of 1:10

Bio-oil recovery protocol

Analytical strategy

Multi-techniques analysis of the fractions and catalyst
screening of catalysts is time-consuming !!!

Catalytic results vs thermal

Catalyst-to-biomass ratio : 1/10 T: 500°C (pyrolyse); catalyse (470°C)

Carbon balance thermal vs catalytic

A. Margeriat et al., J. Appl. Anal. Pyrol. 130 (2018) 149

Van Krevelen diagram of organic phase

- Presence of metals on H-MFI-90 decreases O/C and H/C ratios
- H₂ addition is necessary to upgrade bio oil

Conclusion on catalytic conversion of pyrolytic vapors

- Catalysis plays a role in the composition and stabilization of the bio-oil
- Metal/HMFI catalysts are good candidates to convert pyrolytic vapors
- Catalyzed bio-oil is more stable (conversion of small acids, aldehyde and ketones)
- Characterization of bio-oil needs improvement (25-33 wt% quantified by GC×GC-FID)

Catalytic Lignin conversion

HO

OH

The only natural abundant precursor for aromatics: what is native lignin?

High phenolic monomers yields !

R. Rinaldi et al., Angew. Chem. Int. Ed. 55 (2016) 8164

W. Schutyser et al., Green Chem., 17 (2015) 5035

L T. Parsell et al., *Green Chem.*, 17 (2015), 1492

புதி Lyon 1

•ĤΟ

GPM

Lignarocat project Funded by ANR

Τοται

Highly branched structure Strong intramolecular force Low solubility in solvents

Low conversion and low reaction efficiency

📖 L. Shuai, B. Saha, Green Chem. 19(2017) 3752

Which catalysts ?

- Robust (S-, N-resistant,....)
- Not expensive
- Hydrogenolysis of C-O bonds
- Weak hydrogenating behaviour

Hydrotreating sulfide catalysts Based on Mo or W With Ni or Co as promoters

« CoMoS » Active phase

In literature: Ru, Pd, Cu, Fe and Ni catalysts Phosphides (Ni, W, Mo) Carbides (Ru, Mo)

H. Topsoe et al., J. Catal. 68 (1981) 433.

Lignin Catalytic Hydroconversion

மூ Lyon 1

During the heating stage : structural changes already occured

Mass balance: 96-98 wt% for all

0

gas

CO C2-C5

bn

Liquids = Miscible oligomers + monomers + aqueous + unknown THF-soluble lignin = Lignin residue THF-unsoluble lignin = solids (ash)

.

Catalytic hydroconversion results

Catalytic hydroconversion results

Catalytic hydroconversion results

Evolution of monomers (GCxGC)

GCxGC-MS: identification GCxGC-FID: quantification with internal standard

Liquid in condenser

Catalytic hydroconversion results GCxGC Liquids

Catalytic hydroconversion results GCxGC Liquids

After 13h, aromatic, phenols and alkanes represent 17 wt% of the starting lignin

மூ Lyon 1

Bui et al., Applied Catalysis B: Environmental, 101 (2011) 239

CoMoS/Al₂O₃ catalyst evolution

- Low impact on catalyst properties after the heating step
- Still sulfided after 13h reaction
- HDO Catalytic activity until 13h

Conclusion on lignin catalytic hydroconversion to monomers

After 13h hydroconversion 4.4 g of monomers coming from aromatics were formed over 30 g initial lignin (15.4 wt%)

Initially:

- 2 mmol/g of ether inter-units linkages (β-O-4 and 4-O-5)
- Aromatics units quantified in lignin: 44 wt% of potential « C6H6 » units,

After 13h on catalyst:

- No more ether bonds !
- 15.4 wt% aromatics units are obtained : thus 29 wt% still remain in oligomeric fraction (and lignin residue)
- Not released as monomers because of C-C bonds

Message

Technical lignins will not allow to obtain high quantity of monomers but worth to be valorized. Catalysts for selective C-C bonds cleavages are required

General Conclusion

✓ Development of characterization techniques

- ✓ Still need of selective and resistant catalysts for lignocellulosic biomass conversion
- ✓ Valorization of the wastes to reach circular economy

Thank You

Christophe Geantet Chantal Lorentz Nolven Guilhaume Yves Schurmann Alexandre Margeriat Mathieu Ozagac Junjie Pu Van Ngoc Bui